“Using the pulsars we observe across the Milky Way galaxy, we are trying to be like a spider sitting in stillness in the middle of her web,” says Vanderbilt’s Stephen Taylor, assistant professor of physics and astronomy and former astronomer at NASA’s Jet Propulsion Laboratory (JPL) about the location of absolute stillness in our solar system, the center of gravity with which to measure the gravitational waves that signal the existence of the invisible paradoxes we call black holes, which have no memory, and contain the earliest memories of the universe.
Share this post
Detecting Our Solar System's Center of…
Share this post
“Using the pulsars we observe across the Milky Way galaxy, we are trying to be like a spider sitting in stillness in the middle of her web,” says Vanderbilt’s Stephen Taylor, assistant professor of physics and astronomy and former astronomer at NASA’s Jet Propulsion Laboratory (JPL) about the location of absolute stillness in our solar system, the center of gravity with which to measure the gravitational waves that signal the existence of the invisible paradoxes we call black holes, which have no memory, and contain the earliest memories of the universe.